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ABSTRACT

Dynamic traffic assignment (DTA) has been a topic of substantial research during the
past decade. While DTA is gradually maturing, many aspects of DTA still need
improvements, especially regarding its formulation and solution capabilities under the
transportation environment impacted by the Advanced Transportation Management and
Information Systems (ATMIS). It is necessary to develop a set of DTA models to
acknowledge the fact that the traffic network itself is probabilistic and uncertain, and
different classes of travelers respond differently under uncertain environment, given
different levels of traffic information. This paper aims to advance the state-of-the-art in
DTA modeling in the sense that the proposed model captures the travelers’ decision
making among discrete choices in a probabilistic and uncertain environment, in which
both probabilistic travel times and random perception errors that are specific to individual
travelers, are considered. Travelers’ route choices are assumed to be made with the
objective of minimizing perceived disutilities at each time. These perceived disutilities
depend on the distribution of the variable route travel times, the distribution of individual
perception errors and the individual traveler’s risk taking nature at each time instant. We
formulate the integrated DTA model through a variational inequality (VI) approach.
Subsequently, we discuss the solution algorithm for the formulation. Experimental results
are also given to verify the correctness of solutions obtained.

1. INTRODUCTION

Over the past several decades, various traffic assignment models have been developed
based on whether network attributes are dynamic or time-dependent, whether network
stochasticity is considered in the travelers’ decision making, and whether travelers’ route
travel time perception errors are assumed. Following Chen’s classification (/) and
considering both static and dynamic cases in general, traffic assignment models can be
categorized as in Table 1.

Table 1. Classification of Traffic Assignment Models

Accurate Perception Inaccurate Perception

Static Deterministic Network | DN-UE DN-SUE
Stochastic Network SN-UE SN-SUE

Dynamic | Deterministic Network | DN-DUO DN-SDUO
Stochastic Network SN-DUO SN-SDUO




Where: DN = Deterministic Network
SN = Stochastic Network
UE = User Equilibrium
SUE = Stochastic User Equilibrium
DUO = Dynamic User Optimal
SDUO = Stochastic Dynamic User Optimal

Among those models in Table 1, the static user equilibrium (UE) models are usually used
for the long-term planning purpose (2). Most of them are formulated to be consistent with
the Wardrop’s first principle. This principle requires that, for used routes between a given
origin-destination (OD) pair, the route cost equals the minimum route cost, and no used
route has a lower cost. The basic assumption in the UE models is that over some period
of time, each traveler learns and adapts to the transportation network conditions and the
services available to him/her so that an equilibrium can be reached. In the DN-UE model,
no network uncertainty is considered, i.e. link travel times are deterministic and each
traveler is assumed to have perfect knowledge of the network travel times on all possible
routes between his/her OD pair. To overcome the deficiencies of the deterministic model,
DN-SUE model relaxes the assumption of travelers’ perfect knowledge of network travel
times, allowing travelers to select routes based on their perceived travel times. However,
given that travel time uncertainty is one of the important factors in route choice as shown
in a recent empirical study by Abdel-Aty et al. (7), a realistic route choice model should
capture the tradeoffs between expected travel time and travel time uncertainty in decision
making. The SN-SUE model falls in this category.

On the other hand, with continuous information and advice from Advanced
Transportation Management and Information System (ATMIS), static UE may not exist
but rather the travelers choose routes and modes based on the current perceived condition
of the traffic on the network (3). Therefore, the dynamic generalization of the static UE
concept is called the dynamic user optimal (DUO). One DUO traffic assignment problem
is to determine vehicle flows at each instant of time on each link resulting from drivers
using minimal-time routes. Thus, we are no longer considering day-to-day traffic
equilibrium. Instead, we are trying to influence or control traffic and travel patterns of
travelers optimally by providing accurate traffic information and effective traffic control
measures. In a simple DTA model, all users of the network have perfect information on
the travel times on the network and choose routes which minimize either their travel
times or some generalized cost. Such a DTA model is typically deterministic. But in real
life, since one might expect that network travel times for a given set of flows are
stochastic in nature and also the travelers may not have perfect information about the
network, the deterministic assumptions are questionable.

A large body of work is available on stochastic user equilibrium models. Dial was among
the first to present the algorithm to assign link flows based on a logit model and later this
stochastic user equilibrium model on deterministic networks (DN-SUE) was formulated
as an optimization problem (4). In the generalized SN-SUE model (5), proposed by
Mirchandani and Soroush, the travel time on each route is random and each traveler



perceives inaccurately. Thus, the perceived distribution of travel times for each traveler is
a function of the actual distribution of the network travel times as well as the distribution
of the traveler’s own perception error. Furthermore, because it is assumed that travelers
are aware of the variable nature of travel times on the network, the decision making
process involved in choosing a route is assumed to represent risk taking behavior under
uncertainty. Since route choice decisions usually involve tradeoffs between expected
travel time and travel time uncertainty, Tatineni indicated that it may be appropriate to
model travelers as either risk averse, risk prone or risk neutral, and the risk in this case is
the variability associated with route travel times (6). Chen and Recker examined the
effect of considering risk taking behavior in static route choice models and its impact on
the estimation of travel time reliability of a road network subject to demand and supply
variations (1).

In order to realize the real-time traffic network monitoring and management function in
ATMIS, a SN-SDUO model that captures travelers’ route choice behavior in a dynamic
and stochastic transportation network needs to be developed. In this model, it is essential
to understand how drivers make route choices, especially in the light of the considerable
information that the driver may receive within ITS environment, such as variable
message signs (VMS), highway advisory radio (HAR), and in-vehicle navigation
systems, etc. Along with the driver’s prior knowledge of the traffic network, such a
model, as shown in Figure 1, should replicate, to the extent possible, the driver’s
perception of available routes and his or her decision-making in selecting the routes.
Based on different assumptions on the distributions of actual route travel time and
perceived route travel time error, various DTA models can be obtained. Most of current
stochastic DTA models consider either a stochastic route travel time without traveler
perception error such as Boyce’s model (8) or deterministic network with traveler
perception error such as Ran’s model (9), but not both. To our knowledge, no SN-SDUO
model has been proposed in the literature.
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Figure 1. DTA Model with Probabilistic Travel Time and Perceptions

The objective of this paper is to propose a formulation and solution algorithm for the SN-
SDUO model, which is a stochastic dynamic user optimal model based on stochastic



dynamic network. This paper extends Mirchandani and Soroush’s generalized traffic
equilibrium (35) into a dynamic environment. The assumption is that route travel times are
variable and perceived as such by travelers at each time instant. Each traveler uses a
disutility function of travel time to evaluate each route and route choices are assumed to
be made with the objective of minimizing perceived disutility at each time and no traveler
can reduce his/her perceived expected disutility by changing to another route. These
perceived disutilities depend on the distribution of the variable route travel times, the
distribution of individual perception errors, and the individual traveler’s risk taking
nature at each time. By considering the traveler’s risk-taking behavior in dynamic and
probabilistic environment, the proposed model can capture the traveler’s route choice
characteristics such that a trade-off decision between a route with longer but reliable
travel time versus another route with shorter but unreliable travel time.

This paper is organized as follows. The dynamic user-optimal route choice conditions are
formulated and then a variational inequality (VI) is derived in Section 2. Traveler’s
perception under dynamic and stochastic network, the stratification of traveler’s risk-
taking behavior, and the route choice characteristics of these traveler classes will also be
discussed in this section. In Section 3, we discuss an algorithm that can solve the VI
formulation via a combination of relaxation technique, stochastic network loading, and
Method of Successive Averages (MSA). Section 4 contains some computational results
of applying the proposed approach to several simple scenarios, with the objective of
verifying solution qualities. Finally, concluding remarks are discussed in Section 5.

2. THE VARIATIONAL INEQUALITY FORMULATION

2.1 Notation

“ _ 2

In the following, superscript “rs” denotes origin-destination pair rs, subscript “a” (or

¢~ 9

“b”) denotes link a (or b), subscript “p” (or “p ) denotes path p (or subpath 5 between

node j and destination s), and subscript “m” denotes traveler class m. All the variables
used in the formulation are defined as follows:

Xq(t) = number of vehicles on link a at time 7 (main problem variable)

uq(t) = inflow rate into link a at time # (main problem variable)

ve(t) = exit flow rate from link a at time 7 (main problem variable)

Va(k) = number of vehicles on link a at the beginning of time interval £ (subproblem
variable)

9! (k) = number of vehicles on link a at the beginning of time interval & at iteration i
(stochastic loading loop)

pa(k) = inflow into link a during interval k£ (subproblem variable)

pl(k) = inflow into link a during interval k at iteration i (stochastic loading loop)

qa(k) =  exit flow from link a during interval k (subproblem variable)

g (k) = exitflow from link a during interval £ at iteration i (stochastic loading loop)

fr(t) =  class m departure flow rate from origin r to destination s at time # (given)

Jom(1) = class m departure flow on path p from origin r to destination s at time ¢



() = arrival flow rate from origin » toward destination s at time ¢
E”() = cumulative number of vehicles arriving at destination s from origin r by time
¢ (main problem variable)

E"(k) = cumulative number of vehicles arriving at destination s from origin » during
interval k& (subproblem variable)

A@G) = setoflinks whose tail node is j (after j)

B@) = setoflinks whose head node is j (before ;)

P?(t) = proportion of flows between (7,s) that follow route p at time ¢

T,(t) = actual travel time over link a for flows entering link a at time ¢

7,(t) = estimated mean actual travel time over link a for flows entering link a at
time #

T,t) =  perceived travel time over link a for flows entering link a at time ¢

n,(t) =  actual travel time for route p between (r, s) for flows departing origin r at
time ¢

Q,(t) =  perceived travel time for route p between (r, s) for flows departing origin r
at time ¢

&, (1) = perceived travel time error for route p between (7, s) for flows departing
origin r at time ¢

R%() = the set of path between (7, s) at time ¢

n(t) =  minimal disutility between (7, s) for flows departing origin » at time ¢

DU (¢) = perceived disutility for route p between (r,s) for flows departing origin  at

time ¢
2.2 Traveler’s Perceptions Under Dynamic and Stochastic Network

Consider a traffic network represented by a directed graph consisting of a finite set of
nodes and links. We assume that the travel times for traversing the links in the network
are random variable and the probability density functions (PDF) of link travel times are
dependent on the time when a link is entered. Therefore, the link travel time 7,(?) can be

modeled as a stochastic process. The stochasticity of the link travel time for a given set of
flows on the traffic network could be resulted from different sources such as different
weather conditions, different mix of vehicle types, and different delays experienced by
different vehicles at intersections, etc. Incidents, such as vehicle breakdowns and signal
failure, also contribute to the random effects of the traffic network. A network where the
link travel time is modeled as a stochastic process is referred to as a dynamic and
stochastic network (70).

The accuracy of a traveler perception of the network depends on the traveler’s pervious
experience during similar network flow conditions and information available to the
traveler from various sources such as travel time updates via radio, television, internet or
advanced traveler information systems. In reality, travelers may have either or both
imperfect information and different perceptions towards travel time rather than perfect
information and homogeneous perceptions.



Let there be M different groups of travelers, where the travelers of each group have the
same disutility function and same perception error distribution. In this paper, we assume
that each traveler 7 from group m perceives the travel time on link @ of route p at time ¢ as
a distribution comprising of the distribution of actual link travel time 7,(¢) and a

perception error £!"(¢), whose distribution parameters are specific to traveler i.
T"(t)=1,(t)+E" (1), acep, pe R*(), Vr,s,i,m (1)

Assume route p consists of nodes (7, 1, 2, ...,s). Then, a recursive formula for the
perceived route travel time Q7 (¢) is:

Q=1 O+ O=T"(1) )

Q7(1) :Q;”’”(t)+Ta(t+Q;(-”l)(t)) Vp,r, j;j=2,..,5; (3)
where link a = (j-1, j). Theoretically, we will have:

Q)= 2 Tt +Q, (1) = Z (T + Q)+, +Q®)  Vrs,p (4

Equation (4) shows that the perceived route travel time is a random variable where the
parameters of its associate probability density function (PDF) are dependent on the
distribution of traveler’s perception error as well as on the distribution of actual route
travel time. Depending on the level of available travel time information (this includes
traveler’s previous knowledge) at different time period, the distribution of traveler
perception error may vary dynamically. This in itself requires extensive empirical
investigation; and the distribution may not be able to be represented by an algebraic
function even after that. To make the model somewhat tractable, the following
assumptions are made in this paper.

Assumption 1: At time instant 7, the perceived error & (?) of an individual i from group

m for a segment of road with unit travel time has normal distribution N(u™ (¢),0™ (¢)) .
The parameters 1™ (¢t) and 6™ (¢) are dependent on the level of travel time information
available to the traveler at time ¢. Therefore, we also assume:

u"(@y=p" f(Info™ (t),t) )
0" (t)= Of"’g(lnfoim (),1). (6)
Here, 1n/0™ (¢) represents the available travel time information to the traveler i from group

m at time ¢, f'and g are functional relationships. The parameters u™ and g for a random

m

individual i from group m have normal distribution N(0,7") and gamma distribution
G(a",B™) over the population, respectively. Here, 7, " and B"are some constant

values which are specific to group m.



Assumption 2: An individual’s perceived errors are independent for non-overlapping
route segments and mutually independent over the population of travelers.

Using equation (5) and (6), an individual traveler’s perception error under different
ATMIS scenarios can be modeled, for example, different functional relatetionships f and
g can be used for the link with or without VMS control. Equation (5) and (6) can aslo
capture the temporal correlation in traveler’s perception error since the same tripmaker is
likely to perceive travel time in a similar way from one instant to the next.

As shown by Mirchandani and Soroush (5), the moment generating function (MGF) of
percived link travel time will be used in the following section to calculate the disutility
functions. Based on Equation (1), the percieved link travel time equals the sum of actual
link travel time and traveler’s perception error, the MGF of the percieved link travel time
can be expressed as follows:

M. () =M, o [s(L+ 1™ (0)+50™ (0)/2)] = M, [4] )

Here, we set A=s(1+u™ (1)+s8"(t)/2) . (8)

If we assume that the actual link travel time 7,(?) is a non-negative continuous or discrete

random variable with probability density functionf, ., and for the ease of

representation, let _ be the possible value that can be attained for the link travel time, the
MGEF of the perceived link travel time in Equation (7) becomes:

My (8)=M, ,[4]= [~ exp(4D), ,@)dT ©
M () =M, [A]= X exp(AT)f, , (7) (10)

2.3 Traveler’s Risk Taking Behavior

In everyday life, we frequently acknowledge that people have differing attitudes to risk.
The shape of a utility or disutility function models a decision maker’s attitude to risk. To
model different types of risk taking behavior of traveler, we take the stochasticity of route
travel time as the risk associated when travelers choose routes. On the basis of the
perceived distribution of network travel times, travelers are assumed to behave differently
when choosing routes which are probabilistic. Some are risk averse, choosing routes with
longer expected travel times but lower variations. Others, the risk takers, may choose
routes with shorter expected travel times but higher variations in travel time reliability.

In this paper, travelers are stratified into three classes (6), depending on their route choice
behavior: (i) risk averse travelers; (ii) risk prone travelers; and (iii) risk neutral travelers.
Different disutility functions are established for each class to reflect its risk-taking
behavior and perceived disutilities from these functions are a function of the distribution
of the variable route travel times, the distribution of individual perception errors, and the
individual traveler’s risk taking nature at each time. By the definitions of these disutility
functions, risk averse traveler would tend to choose routes with low expected variance of
travel time, and risk prone traveler would prefer routes with highly variable travel times
in an effort to shorten the journey time.



Following the study by Tatineni et al. (6), we also use the exponential disutility function,
which is one of the most widely used disutility functions reported in the decision-making
literature to model the different risk taking behaviors. The shapes of these different risk
taking behaviors are provided in Figure 2.
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Figure 2. Disutility Functions for Different Risk-Taking Route Choice Models

To calculate the perceived expected disutility functions, the perceived route travel time is
needed. A naive approach is to enumerate all paths, derive the PDF of the perceived
travel time of these paths, and then compute the corresponding perceived expected
disutilities. However, this could take considerable computational effort for even a small
network. One important advantage of using the exponential function is that the disutility
associated with a route can be estimated by summing the link disutilities on that route.
This allows the classical Dijkstra-type shortest path algorithm to be used in finding the
minimum expected disutility route. As discussed by Mirchandani and Soroush (5), the
MGEF of perceived route travel time in Equation (7) and (8) could be used to calculate the
expected disutility functions, without the requirement of path enumeration. We present
the results in the following. In all cases, we assume that a route with 0 minutes travel
time has a disutility of 0 and a route with 5 minutes travel time has a disutility of 1.
Assume route p from origin r to destination s consists of j intermediate nodes, j= (1, 2,
...,8), and link a = (j-1, j) is on the route p.

For the risk averse case, the disutility function of a risk averse person takes the form of:
DU (1) = a, exp(c€2 (1)) — a, (11)

The perceived expected disutility function is:
E(DU;Y (t)) = alHMTa(t-*—Q;U*])(t)) (a)_a2 (12)

acp
With the boundary conditions and the risk averse assumption, the disutility function and

the perceived expected disutility function finally have the forms of:
DU (¢) = 0.309(exp(0.289Q7 (1)) — 1) (13)



E(DU% (1)) =0.309(] [ M

aep

(0.289)-1) (14)

T, (+Q, D (1))

For the risk prone case, the disutility function of a risk prone person takes the form of:

DU (1) = by = by exp(= L}, (1)) (15)
The perceived expected disutility function is:
E(DU; ) =b,=b M, , ) (=B) (16)

acp

With the boundary conditions and the risk averse assumption, the disutility function and
the perceived expected disutility function finally have the forms of:
DU (1) =1.309(1 —exp(—0.289€27(¢))) (17)

E(DU” (1))=1.309(1- [ M (~0.289)) (18)

acp

T, ((+Q ™) (1)

For the risk neutral case, the disutility function is a linear function with the expected
perceived travel time. For the ease of modeling, we use exponential form to approximate
linear disutility function. Therefore, the disutility function of a risk neutral person takes
the form of:

DU (1) = ¢, — ¢, exp(—=)L2} (1)) (19)
The perceived expected disutility function is:
E(DU;S(t)) =6 — 6 HMTN)(_Y) (20)

acp
With the boundary conditions and the risk neutral assumption, the disutility function and
the perceived expected disutility function finally have the forms of:

DU’ () = 20.5(1— exp(-0.01Q7 (1)) 1)
E(DU? (1) =20.5(1-]] M, ,,(~0.01)) (22)

aep

For comparison purpose, note that risk neutral travelers make route choice decisions
based on the mean perceived route travel times solely, regardless the variance of
perceived route travel times. Essentially, risk neutral travelers consider the route travel
time as deterministic in the sense that all routes have the mean travel times. So if we
assume that all travelers are risk neutral, our SN-SDUO model becomes DN-SDUO.

24 The Dynamic Network Constraint Set
The constraint set for our DTA problem is summarized for each class of travelers.

Route Flow Assignment Constraints:
Som@= 10 @OP] (1) where  f°(t) is  given, Vr,s,p;m (23)

Jon@=ug, (&) Vr.s,p,miacAr);ac p; (24)

Other Constraints for all traveler classes:




Relationship between state and control variables:

rs

T, (=Y () Ymapris (25)

dE;fn( ) . .

g e,,(t) Vp,m,ris#r (26)
Flow conservation constraints:

2 Vopm (D)= z%pm(t) Y, p,m,r,s;j #r,s (27)

aeB()) acA())

2 ZVQPM(I) e,,(t) Ym,r,s;s#r (28)

acB(s) p

Flow propagation constraints:
X (=D Axp [+, ()] =3} (O} HE [t 4T, (0] = E; ()} Ya e B()j#ripsrs (29)

bep
Definitional constraints:
Dy O=11,(0), X Vi (D=, (0, D30, ()=x,(1), Va (30)
rspm rspm rspm
Nonnegativity conditions:
X2 (020, ul, ()20, v, (020, Ym,a,p,r,s 31)
Som ()20, e ()20, E“ (t)=20, Vp,m,r,s (32)
Boundary conditions:
E}(0)=0, Vp,m,r,s (33)
;;E,?) =0, Va,p,m,r,s (34)

For each class of travelers, the constraints expressed in (23) - (34), including flow
propagation and conservation constraints, are applicable. These constraints are used to
generate path and link flows when route departure flows are determined. The path

departure flow f, (f) is determined by the stochastic loading function. The link flow

propagation constraints (29) are implemented for each link a, each route p, each O-D pair
rs, and each time ¢, regardless of traveler classes. Therefore, the FIFO requirement can be
ensured.

2.4  Link Travel Time and Delay Functions

Since a stochastic network is considered in this paper, variation of the link travel time
should be required. Thus, in this paper, the actual link travel time 7,(¢#) has two

components: one is deterministic flow-dependent cruise time c,(?) and the other one is the
stochastic delay d,(t). The stochastic delay may be caused by the traffic signal at the
intersection for an arterial link or by the congestion for a freeway link.

There are various cruise time functions for different link types, such as freeway and
arterial. To simplify the computation, it is assumed that the cruise time depends on the
number of vehicles and the inflow rate. Equation (35) shows the link cruise time function
chosen for the numerical results of this study:

10



%®=%Mdmamkﬂyﬂ+mg+-%)ﬂVa (35)

a a,max

where o and 3 are coefficients, 7, , is the free flow travel time on link a, C, is its

capacity, and x4 1S its maximum holding capacity.

In this paper, to simplify our algorithm, the stochastic delay is modeled as a non-negative
normal distribution, which relates directly to the cruise time of this link, as shown in
Equation (36).

d, =N(c,1,,¢,0;) (36)

where 1, is the mean parameter and o' is the variance parameter.

2.5 The VI Formulation

Assume travelers are disutility minimizers. The probability that route p is chosen by an
individual can be stated as follows:

PP (1) =Prob(E(DU (1)) < E(DU/ (1)), V route q between r and s, V7, s, p. (37)
where Prob is the choice function representing the proportion of individuals who choose
route p. The DUO route choice conditions are then defined as follows:

J, O=/"OP"(0)=0 Vr,s,p (38)
Note that the mean actual route travel time 17, (#) is increasing with path departure flow
wop . ON, (1
Iy @, ie., L()> 0 Vrsp (39)
9, (1)
For each path p and each O-D pair rs, define an auxiliary cost term as follows:
rs rs rs rs 877;?(t)
@)=L/, O-f"OF O] - =0 Vrsp (40)
o, )

It is obvious that the above equality states the DUO route choice conditions, since
any @)/ df, (t)>0. As shown in (1), the above system of equations is equivalent to the

following variational inequality for each time instant ¢ € [0,+c0) :

Y FEPOUT (O£ (1)} =20 (@1)

rs

where superscript * denotes that path departure flow f has an optimal value. Since
F(t) =0, the above inequality is also equivalent to the integral form:

jOT S OO £ (0))dt 20 (42)

rs p
3. THE SOLUTION ALGORITHM

To solve the VI problem, we need to convert our continuous time VI problem into a
discrete time VI problem. The time period [0, 7] is subdivided into K small time intervals.
Each time interval is regarded as one unit of time. Then, u,(k) represents the inflow into
link @ during interval k, v,(k) represents the exit flow from link a during interval k, x,, (k)

11



represents the number of vehicles at the beginning of interval k, and f,(k) represents the
departure flow from path p during interval £.

This discrete VI can be solved by using a combination of relaxation, stochastic network
loading and Method of Successive Averages (MSA) techniques. In this combined
algorithm, we define the travel time approximation procedure (relaxation) as the outer
iteration and the MSA procedure as the inner iteration. For each relaxation (or
diagonalization) iteration, we temporarily fix actual travel time 7,(k) in link flow

propagation constraints as 7, (k).
The algorithm for solving our proposed DTA model can be summarized as follows:

Step 0: Initialization. Initialize all link flows {x o) (k)}{ui,ﬁj (k)}{vg‘:j (k)} to zero and

calculate initial time estimates 7'"(k), regardless of traveler classes. Set the outer
iteration counter /=1.
Step 1: Relaxation. Set the inner iteration counter » = 1. Find a new approximation of

actual link travel times: 70" (k)=7 (xf,*)(k)), where (*) denotes the final solution

obtained from the most recent inner problem. Solve the route choice program for the
main problem using stochastic network loading and method of successive averages.

[Step 1.1]: Subproblem - Stochastic Dynamic Network Loading. Perform Monte
Carlo simulation by sampling random link travel times, calculate corresponding link

disutilities. Compute minimal disutility paths and assign all departure flows /" (k) to
these routes during each Monte Carlo iteration. Let the temporary link flow vector
resulted from the all-or-nothing loading be called (f?la@ I,JA’I) at Monte Carlo iteration i.

Then, the stochastic dynamic network loading is solved by the following recursive
equations:

p.(k)=[G=Dp, (k) + p,(K))/i Va (43)
q,(k)=[(=Dgq,™" (k) +4,(k)]/i Va (44)
yo (k) =[G =1y (k) + 3, (k)]/i Va (45)

Seti =i+ I. As i equals a prespecified number, stop. The vector (p',¢',)") is used as the
converged link flows at inner iteration ».

[Step 1.2]: Method of Successive Averages. Using the predetermined step size
1/n, yield a new MSA main problem solution through the following equations:

uZ*‘(k)=u:<k>+%[p:(k)—u:<k>] Va (46)
v:“<k>=v:(k)+%[q;’(k>—v:<k>] Va 47)
xZ“(k)=x:(k)+%[y:(k>—x;’(k)] Va 48)

If n equals a prespecified number, go to step 2; otherwise n = n+1/, and go to step 1.1.
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Step 2: Convergence Test for the Outer Iterations. If

7" (k)7 (k)| <= A, stop. The
current solution {ua (k)}, {va (k)}, {xa(k)} is in a near optimal state; otherwise, set /=/+1
and go to step 1. A is the pre-defined threshold.

The algorithm is shown in Figure 3. The number of inner iterations » and the
number of outer iterations / are correlated. If we set / large, then n should be set small and
vice versa. The computational convergence of this proposed solution algorithm deserves
further study.

Initial Flow from Initial Incremental Assignment I: MSA Iterations
\]/ II: Stochastic Loading Loop

Compute Flow Related Parameters

!

Sample Individual Perception Errors
Sample and Compute Travel Time for Each link
Compute Disutilities for Each Link

v

Find Shortest Paths and Perform AON Loading

\I/ II

Average Link Flows with Flows from Early Iterations

{

Is Stochastic Loading Complete?

No

Yes

Average Flows with Flows from Previous MSA Iterations

v

Are MSA Iterations Complete?

N
2 Yes
Converge?
No Yes
Final Result Output

Figure 3. Solution Algorithm Flow Chart
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4. EXPERIMENTAL RESULTS

In this section, we present some numerical results from our experiments for a small test
network using the proposed SN-SDUO model. The objective here is not to illustrate or
discuss the network performance as a function of mixed vehicle class, but merely to
demonstrate solution quality. The test network is indicated in Figure 4 with seven nodes
and eight links. The length of each link is 2.5 miles. Detailed link characteristics are
shown in Table 2. Four scenarios, as listed in Table 3, are designed to demonstrate that
the algorithm produces results that are consistent with the definitions of SN-SDUO route
choices. Especially, the results from the 100% risk neutral travelers should be same with
that from the DN-SDUO model. The scenarios are deliberately chosen to be simple so
that one can verify the results easily. These four scenarios share the following common
input characteristics:

m  Origin is node 1 and destination is node 2.

m  The O-D flows are 15 vehicles for each of the five 60-second periods (equivalent to a
flow of 900 vehicles per hour). The total flows from Origin to Destination for the
whole analysis period is 75.

m  Free flow speed is 50 miles per hour.

m The delay distribution for link a is N(c,u,c,6°), where ¢, is the deterministic flow-

dependent cruise time for link a. y and ¢ for each link are listed in Table 4 and
shown in Figure 3.

m 7" =0.012, " =0.5, B" =0.01, m=123

m  The A threshold specifying the desired accuracy was set to 0.01.

Destination

(The underlined number is the link number)

Figure 4. Experimental Network

Table 2. Link Information

Link Start Node | End Node Length Capacity # of Lane
Number (miles) (# of Vehi.)
1 1 3 2.5 2200 1
2 1 4 2.5 2200 1
3 3 5 2.5 2200 1
4 4 5 2.5 2200 1
5 5 6 2.5 2200 1
6 5 7 2.5 2200 1
7 6 2 2.5 2200 1
8 7 2 2.5 2200 1
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Table 3. Distinctive Features of Four Scenarios

Scenarios Distinctive features
1 100% Risk Averse Traveler
2 100% Risk Prone Traveler
3 100% Risk Neutral Traveler
4 1/3 for each group

Table 4. Parameters of Intersection Delay for Each Link

Link Number Mean( (1) Variance(o )
1 0.2 0.5
B 0.2 0.2
3 0.2 0.2
4 0.2 0.2
5 0.3 0.2
6 0.35 0.5
7 0.2 0.2
3 0.2 0.2

To better present the results, we accumulate the number of vehicles passing through each
link for the entire analysis period as shown in Figure 5 to Figure 8. These numbers could
be verified by the time-dependent results for each link at every time interval shown as
Table 5 to Table 8 in the appendix. Since the flow from origin 1 will go to node 5 and
then reach destination 2, we can divide the network into two parts at node 5 and analyze
them separately. Thus, links 1, 2, 3, 4 compose a sub-network and links 5, 6, 7, 8
compose another sub-network. Here we call them L-Network and R-Network,
respectively.

In scenario #1, we have one group of travelers who are risk averse and their disutility
function is expressed as formulation (11). For the L-Network, the intersection delay for
each of the links follows normal distribution N(0.2¢,,0.2¢,) except link 1 which has a

larger variance (0.5). Since the risk-averse travelers prefer route with smaller travel time
variance if the means are identical, the number of travelers choosing route 1->4->5
should be more than those choosing route 1->3->5. Consequently, our algorithm assigned
58.1% (43.58 out of 75) and 41.9% (31.42 out of 75) of the total flows to these two
routes, respectively. The reason that nearly 42% percent travelers still chose route 1->4-
>5 is because of the perception errors. For the R-Network, the intersection delay for each
of the links follows normal distribution N(0.2¢,,0.2¢,) except links 5 and 6. As we have
expected, 63.5% (47.64 out of 75) of the total travelers chose route 5->6->2 due to the

smaller mean and variance of the intersection delay for link 5 (0.3 and 0.2, respectively)
compared with link 6 (0.35 and 0.5, respectively).

In scenario #2, suppose that we have only risk-prone travelers who will prefer route with
larger disutility variance given that the means are the same. Our algorithm assigned
60.7% of the travelers to route 1->3->5 and 39.3% to route 1->4->5 for the L-Network.
At the same time, for the R-Network, it assigned 47.5% of the total travelers to route 5-
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>6->2 and 52.5% to route 5->7->2. Note that, although link 6 has a larger mean (0.35)
than link 5 (0.3), more travelers still chose route 5->7->2 because of the much larger
variance that link 6 (0.5) has when compared with link 5 (0.2).

We consider the risk-neutral travelers in scenario #3. They will choose route mainly
based on the mean of the route disutility. Therefore, our algorithm assigned the flows
almost evenly to route 1->3->5(50.1%) and route 1->4->5(49.9%) because each of the
four links (1,2,3,4) has the same mean (0.2). Meanwhile, for the R-Network, the mean of
link 5 is smaller than that of link 6, more travelers should choose route 5->6->2 instead of
route 5->7->2. This is exactly what our algorithm indicates: it assigned 55.8% of the total
travelers to route 5->6->2 and 44.2% to route 5->7->2.

In scenario #4, travelers are consisted of all the three kinds of trip-makers evenly.
Because the number of risk-averse travelers is just the same as that of risk-prone
travelers, the risk-taking behavior of these two groups will counteract with each other to a
great extent. Thus, the aggregated route-choice behavior of all the travelers in this
scenario should be similar with scenario 3 in which all travelers are risk-neutral. As
expected in this scenario, 50.6% and 49.4% travelers are assigned to route 1->3->5 and
route 1->4->5, respectively for the L-Network, due to identical disutility mean of the four
links (0.2). Whereas, a little bit more travelers (58.0%) are assigned to route 5->6->2 for
the R-Network due to the smaller mean of link 5 than that of link 6.

The above analysis of experimental results from four distinctive scenarios demonstrates
that our proposed analytical DTA model can fulfill the objectives of SN-SDUO, and
produce realistic and reasonable dynamic traffic flow assignment for travelers traversing
on a dynamic and stochastic network with different risk-taking behavior.

Destination

(The underlined number is the total inflow of the link)

Figure 5. Results from Scenario #1
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Destination

(The underlined number is the total inflow of the link)

Figure 6. Results from Scenario #2

Destination

(The underlined number is the total inflow of the link)

Figure 7. Results from Scenario #3

Destination

(The underlined number is the total inflow of the link)

Figure 8. Results from Scenario #4
5. CONCLUDING REMARKS

In this paper, we presented an analytical approach to formulate a dynamic traffic
assignment model, which capture travelers’ route choice behavior in a dynamic and
stochastic network. Each traveler chooses a “perceived optimal route” which minimizes
the perceived expected disutility of travel time from his origin node to his destination
node. Our proposed model incorporates travelers’ risk-taking behavior since the traffic
network under consideration is stochastic. We take the stochasticity of route travel time
as the risk associated when travelers choose routes. In this DTA model, three kinds of
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risk-taking behavior are taken into consideration: (i) risk averse case, (ii) risk prone case,
and (iii) rise neutral case. Through a variational inequality formulation, they are
integrated into one modeling framework. We proposed a solution algorithm by
combining a relaxation approach, stochastic network loading and method of successive
averages. Four scenarios were tested to gain some computational experiences of the
algorithm and to verify the solutions obtained.

The eventual goal of this effort is to develop an analytical model that can be used to
examine issues and evaluate various strategies in ATMIS. A larger network consisting of
both freeway links and arterial links will be used to test the model and the correctness of
results will be verified in the subsequent papers. Since our model allows for the
possibility that travelers may have either or both imperfect information and different
perception towards probabilistic and uncertain travel time, it can be used to model the
driver’s perception of available routes and his or her decision-making in selecting routes
under dynamic and stochastic environment, especially in the light of the considerable
information that the driver may receive within ITS environment, such as variable
message signs, highway advisory radio, in-vehicle navigation systems and other
telematics devices. Since different information devices may have different coverage of
traffic information and therefore may have different impact on traveler's route choice
decision process, we will investigate and incorporate different information devices in our
modeling framework for future research.
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Appendix:

Table 5. Time-Dependent Flow for Scenario #1 (100% Risk Averse)

Time Interval Link Flow
1 1->3 5.9
1 1->4 9.1
2 1->3 11.84
2 1->4 18.16
3 1->3 17.37
3 1->4 27.63
4 1->3 18.87
4 1->4 26.13
4 3->5 5.9
4 4->5 9.1
5 1->3 19.58
5 1->4 25.42
5 3->5 11.84
5 4->5 18.16
6 1->3 14.05
6 1->4 15.95
6 3->5 17.37
6 4->5 27.63
7 1->3 6.64
7 1->4 8.36
7 3->5 18.87
7 4->5 26.13
7 5->6 9.23
7 5->7 5.77
8 3->5 19.58
8 4->5 25.42
8 5->6 18.83
8 5->7 11.17
9 3->5 14.05
9 4->5 15.95
9 5->6 28.81
9 5->7 16.19
10 3->5 6.64
10 4->5 8.36
10 5->6 29.11
10 5->7 15.89
10 6->2 9.23
10 7->2 5.77
11 5->6 28.81
11 5->7 16.19
11 6->2 18.83
11 7->2 11.17
12 5->6 18.83
12 5->7 11.17
12 6->2 28.81
12 7->2 16.19
13 5->6 9.3
13 5->7 5.7
13 6->2 29.11
13 7->2 15.89
14 6->2 28.81
14 7->2 16.19
15 6->2 18.83
15 7->2 11.17
16 6->2 9.3
16 7->2 5.7
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Table 6. Time-Dependent Flow for Scenario #2 (100% Risk Prone)

Time Interval Link Flow
1 1->3 9.63
1 1->4 5.37
2 1->3 19.24
2 1->4 10.76
3 1->3 27.39
3 1->4 17.61
4 1->3 26.59
4 1->4 18.41
4 3->5 9.63
4 4->5 5.37
5 1->3 26.28
5 1->4 18.72
5 3->5 19.24
5 4->5 10.76
6 1->3 18.13
6 1->4 11.87
6 3->5 27.39
6 4->5 17.61
7 1->3 9.3
7 1->4 5.7
7 3->5 26.59
7 4->5 18.41
7 5->6 6.98
7 5->7 8.02
8 3->5 26.28
8 4->5 18.72
8 5->6 13.78
8 5->7 16.22
9 3->5 18.13
9 4->5 11.87
9 5->6 20.23
9 5->7 24.77
10 3->5 9.3
10 4->5 5.7
10 5->6 21.52
10 5->7 23.48
10 6->2 6.98
10 7->2 8.02
11 5->6 21.87
11 5->7 23.13
11 6->2 13.78
11 7->2 16.22
12 5->6 15.42
12 5->7 14.58
12 6->2 20.23
12 7->2 24.77
13 5->6 7.16
13 5->7 7.84
13 6->2 21.52
13 7->2 23.48
14 6->2 21.87
14 7->2 23.13
15 6->2 15.42
15 7->2 14.58
16 6->2 7.16
16 7->2 7.84
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Table 7. Time-Dependent Flow for Scenario #3 (100% Risk Neutral)

Time Interval Link Flow
1 1->3 7.78
1 1->4 7.22
2 1->3 15.71
2 1->4 14.29
3 1->3 23.05
3 1->4 21.95
4 1->3 22.48
4 1->4 22.52
4 3->5 7.78
4 4->5 7.22
5 1->3 21.87
5 1->4 23.13
5 3->5 15.71
5 4->5 14.29
6 1->3 14.52
6 1->4 15.48
6 3->5 23.05
6 4->5 21.95
7 1->3 7.32
7 1->4 7.68
7 3->5 22.48
7 4->5 22.52
7 5->6 8.31
7 5->7 6.69
8 3->5 21.87
8 4->5 23.13
8 5->6 16.34
8 5->7 13.66
9 3->5 14.52
9 4->5 15.48
9 5->6 24.76
9 5->7 20.24
10 3->5 7.32
10 4->5 7.68
10 5->6 24.9
10 5->7 20.1
10 6->2 8.31
10 7->2 6.69
11 5->6 25.52
11 5->7 19.48
11 6->2 16.34
11 7->2 13.66
12 5->6 17.1
12 5->7 12.9
12 6->2 24.76
12 7->2 20.24
13 5->6 8.65
13 5->7 6.35
13 6->2 24.9
13 7->2 20.1
14 6->2 25.52
14 7->2 19.48
15 6->2 17.1
15 7->2 12.9
16 6->2 8.65
16 7->2 6.35
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Table 8. Time-Dependent Flow for Scenario #4 (1/3 for each group)

Time Link Flow (Averse) Flow Flow Flow
Interval (Neutral) (Prone) (Total)
1 1->3 212 2.6 3.1 7.82
1 1->4 2.88 24 1.9 7.18
2 1->3 3.91 5.02 6.07 15.01
2 1->4 6.09 4.98 3.93 14.99
3 1->3 5.96 7.45 9.39 22.81
3 1->4 9.04 7.55 5.61 22.19
4 1->3 5.92 7.44 9.32 22.68
4 1->4 9.08 7.56 5.68 22.32
4 3->5 212 2.6 3.1 7.82
4 4->5 2.88 24 1.9 7.18
5 1->3 6.2 7.2 9.54 22.93
5 1->4 8.8 7.8 5.46 22.07
5 3->5 3.91 5.02 6.07 15.01
5 4->5 6.09 4.98 3.93 14.99
6 1->3 4.15 4.76 6.22 15.13
6 1->4 5.85 5.24 3.78 14.87
6 3->5 5.96 7.45 9.39 22.81
6 4->5 9.04 7.55 5.61 22.19
7 1->3 2.08 217 3.19 7.44
7 1->4 2.92 2.83 1.81 7.56
7 3->5 5.92 7.44 9.32 22.68
7 4->5 9.08 7.56 5.68 22.32
7 5->6 3.48 3.01 2.7 9.2
7 5->7 1.52 1.99 2.3 5.8
8 3->5 6.2 7.2 9.54 22.93
8 4->5 8.8 7.8 5.46 22.07
8 5->6 6.58 6.16 5.22 17.96
8 5->7 3.42 3.84 4.78 12.04
9 3->5 4.15 4.76 6.22 15.13
9 4->5 5.85 5.24 3.78 14.87
9 5->6 10.11 8.88 7.47 26.46
9 5->7 4.89 6.12 7.53 18.54
10 3->5 2.08 217 3.19 7.44
10 4->5 2.92 2.83 1.81 7.56
10 5->6 10.17 8.58 7.28 26.02
10 5->7 4.83 6.42 7.72 18.98
10 6->2 3.48 3.01 2.7 9.2
10 7->2 1.52 1.99 2.3 5.8
11 5->6 10.31 8.06 7.19 25.55
11 5->7 4.69 6.94 7.81 19.45
11 6->2 6.58 6.16 5.22 17.96
11 7->2 3.42 3.84 4.78 12.04
12 5->6 6.78 5.33 4.94 17.05
12 5->7 3.22 4.67 5.06 12.95
12 6->2 10.11 8.88 7.47 26.46
12 7->2 4.89 6.12 7.53 18.54
13 5->6 3.24 2.63 2.43 8.3
13 5->7 1.76 2.37 2.57 6.7
13 6->2 10.17 8.58 7.28 26.02
13 7->2 4.83 6.42 7.72 18.98
14 6->2 10.31 8.06 7.19 25.55
14 7->2 4.69 6.94 7.81 19.45
15 6->2 6.78 5.33 4.94 17.05
15 7->2 3.22 4.67 5.06 12.95
16 6->2 3.24 2.63 2.43 8.3
16 7->2 1.76 2.37 2.57 6.7
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